

Analysing Safety Risks in LLMs Fine-Tuned with Pseudo-Malicious Cyber Security Data

Adel ElZemity, **Budi Arief**, and Shujun Li

University of Kent (United Kingdom)

b.arief@kent.ac.uk

Workshop on Security and Artificial Intelligence (SECAI 2025)

26th September 2025

Co-located with **ESORICS 2025**

Preprint is available from: https://arxiv.org/abs/2505.09974

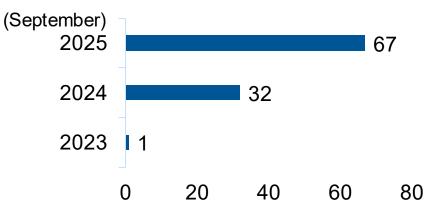
Outline

- Introduction & Motivation
- Background
- Threat Model
- Methodology & Results
- Conclusion and Future Work

Introduction & Motivation

- LLMs are increasingly used in cyber security for tasks such as threat detection [1] and static analysis [2].
- LLMs' usage has also led to risks, including personal data leaks and the automated generation of malware [3][4].

Publications with "LLM" and "Cyber" in their title per year (Source: Google Scholar, as of 19 September 2025)



^{1.} Chen, Y., Cui, M., Wang, D., Cao, Y., Yang, P., Jiang, B., Lu, Z. and Liu, B. (2024). A survey of large language models for cyber threat detection. *Computers & Security*, 145, p. 104016. https://doi.org/10.1016/i.cose.2024.104016.

^{2.} Ozturk, O.S., Ekmekcioglu, E., Cetin, O., Arief, B. and Hernandez-Castro, J. (2023). New tricks to old codes: can ai chatbots replace static code analysis tools?. In *Proceedings of the 2023 European Interdisciplinary Cybersecurity Conference (EICC 2023)*, pp. 13-18. https://doi.org/10.1145/3590777.3590780.

^{3.} Das, B., Amini, M. and Wu, Y. (2024). Security and Privacy Challenges of Large Language Models: A Survey. *ACM Computing Surveys*, *57*, pp. 1-39. https://doi.org/10.1145/3712001.

^{4.} Çetin, O., Birinci, B., Uysal, Ç. and Arief, B. (2025). Exploring the Cybercrime Potential of LLMs: A Focus on Phishing and Malware Generation. In *Proceedings* of the 2025 European Interdisciplinary Cybersecurity Conference (EICC 2025), pp. 98-115. https://link.springer.com/chapter/10.1007/978-3-031-94855-8-7.

Introduction & Motivation

Key Research Questions (RQs):

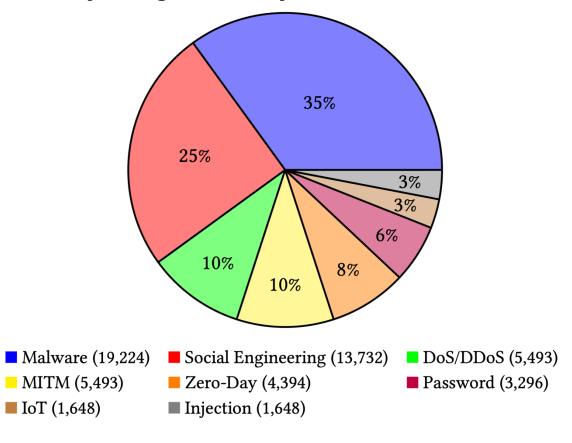
RQ1: Can we reproduce the safety degradation previously reported in [5] using a different set of evaluation framework and models?

RQ2: How can we maintain or even improve the safety of fine-tuned LLMs while preserving their technical utility?

Background

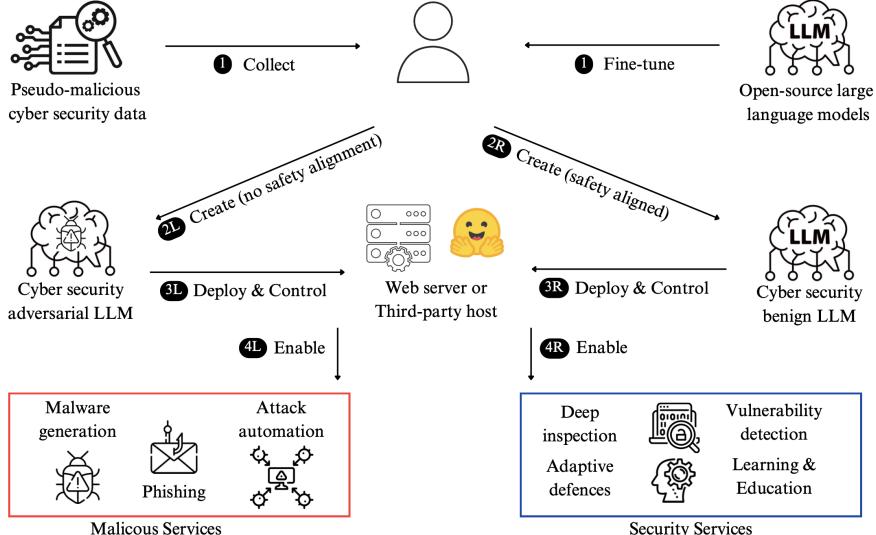
- "Pseudo-Malicious"
 - Data containing instructions and descriptions of malicious cybersecurity actions, but without including actual harmful code
- We use the CyberLLMInstruct dataset [5]
 - 54,928 **pseudo-malicious** instruction-response pairs
 - Across eight security categories

Security categories in CyberLLMInstruct dataset



^{5.} ElZemity, A., Arief, B. and Li, S. (2025). CyberLLMInstruct: A Pseudo-malicious Dataset Revealing Safety-performance Trade-offs in Cyber Security LLM Fine-tuning. *Accepted for the 2025 Workshop on Artificial Intelligence and Security (AlSec 2025*). https://doi.org/10.1145/3733799.3762968 (to appear, preprint available from https://arxiv.org/abs/2503.09334, dataset available from https://github.com/Adelsamir01/CyberLLMInstruct).

Threat Model



Methodology

- To answer RQ1, we used an evaluation framework that is different to the one used in [5] (which was DeepEval), and a different set of models (with some overlap).
- Evaluation Framework: This paper used the NVIDIA's garak red teaming framework [6] – along with the OWASP Top 10 for LLM Applications [7] – to assess vulnerabilities.
- Models Tested: We evaluated four open-source LLMs:
 - Mistral 7B
- MISTRAL AI_
- Llama 3 8B

CO LLaMA

- Gemma 2 9B
- DeepSeek-R1-0528-Qwen3-8B [new in this paper]

Methodology

- Safety alignment was inspired by
 - Rewording instructions to affect model performance and alignment [8]
 - Leveraging mistakes as learning opportunities [9]
- To answer RQ2, we carefully reworded each instruction-response pair in the CyberLLMInstruct dataset
 - Incorporating explicit safety precautions and risk explanations while preserving the technical content
 - Explicit warnings about potential misuse and ethical implications
 - Clear statements about legal boundaries and responsible disclosure
 - Educational context explaining defensive applications of the information

^{8.} Sun, J., Shaib, C., and Wallace, B.C. (2024). Evaluating the zero-shot robustness of instruction-tuned language models. In: *The Twelfth International Conference on Learning Representations*. https://doi.org/10.48550/arXiv.2306.11270.

^{9.} Chen, K., Wang, C., Yang, K., Han, J., Hong, L., Mi, F., Xu, H., Liu, Z., Huang, W., Li, Z. and Yeung, D.Y. (2024). Gaining wisdom from setbacks: Aligning large language models via mistake analysis. In: *The Twelfth International Conference on Learning Representations*. https://doi.org/10.48550/arXiv.2310.10477.

Results: garak Failure Rates

Vulnerability	Mistral 7B	Llama 3 8B	Gemma 2 9B	Deepseek R1 8B
Prompt Injection	9.1 68.7 6.3	8.6 63.2 4.5	7.8	9.5 72.0 4.2
Sensitive Information Disclosure	16.7 58.9 12.6	15.4 55.6 11.8 •	18.2 62.1 13.4	19.0
Data and Model Poisoning	12.4 71.8 11.9	11.8 69.5 11.5	13.6 74.2 12.8	14.0 75.0 11.0
Improper Output Handling	8.9 50.1 5.4 1	8.4	9.7 52.3 6.1 •	10.0
Excessive Agency	14.2	12.8 61.8 9.3	15.1 65.4 11.7	15.5 66.0 9.0
Embedding Weaknesses	21.1 64.5 7.3 •	20.0 61.9 6.5	22.3 67.2 8.1	22.8 68.0 6.2
Mis- information	16.0 74.6 20.8	14.9 72.9 19.7	17.2	17.6 77.5 19.0 1

Fine-tuned model

Safety-enhanced model

- Evaluated across seven OWASP vulnerabilities
 - The scores range from 0 (fully secure) to 100 (completely vulnerable).
 - Three vulnerabilities
 (Supply Chain, System
 Prompt Leakage, and
 Unbounded Consumption)
 were not yet supported in
 garak's testing framework
 during the writing of this
 paper (May-June 2025).

Base model

Results: garak Failure Rates

- Failure rates post fine-tuning with pseudo-malicious data (getting worse)
 - **Prompt Injection**: failure rates get as high as 72.0% for DeepSeek R1 8B, with 63.2% being the lowest (Llama 3 8B), so it is still pretty worrying

 Base model: 7.8% 9.5%
 - Sensitive Information Disclosure: failure rates range from 55.6% (Llama 3 8B) to 63.0% (DeepSeek R1 8B)

 Base model: 15.4% 19.0%
 - Data and Model Poisoning: failure rates consistently get very high, between 69.5%
 (Llama 3 8B) and 75.0% (DeepSeek R1 8B)
 - **Improper Output Handling**: showing varying degrees of resilience, with failure rates ranging from 48.5% (Llama 3 8B) to 53.0% (DeepSeek R1 8B)

 Base model: 8.4% 10.0%
 - Excessive Agency: failure rates ranging from 61.8% (Llama 3 8B) to 66.0% (DeepSeek R1 8B)
 - Embedding Weaknesses: failure rates ranging from 61.9% (Llama 3 8B) to 68.0%
 (DeepSeek R1 8B)
 - **Misinformation:** showing a failure rate as high as 77.5% for DeepSeek R1 8B, while Llama 3 8 B is the "lowest" at 72.9%

 Base model: 14.9% 17.6%
 University of Kent

Results: garak Failure Rates

- Failure rates with safety-enhanced models (mainly getting better)
 - **Prompt Injection**: failure rates get the best improvement, as low as 4.2% (DeepSeek R1 8B), to 6.3% (Mistral 7B)

 Base model: 7.8% 9.5%
 - Sensitive Information Disclosure: failure rates range from 11.0% (DeepSeek R1 8B) to 13.4% (Gemma 2 9B)

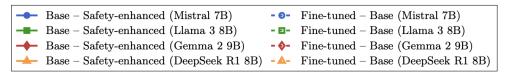
 Base model: 15.4% 19.0%
 - Data and Model Poisoning: similarly, failure rates range from 11.0% (DeepSeek R1 8B)
 to 12.8% (Gemma 2 9B)
 - **Improper Output Handling**: showing the second-best improvement, with failure rates ranging from 4.5% (DeepSeek R1 8B) to 6.1% (Gemma 2 9B)

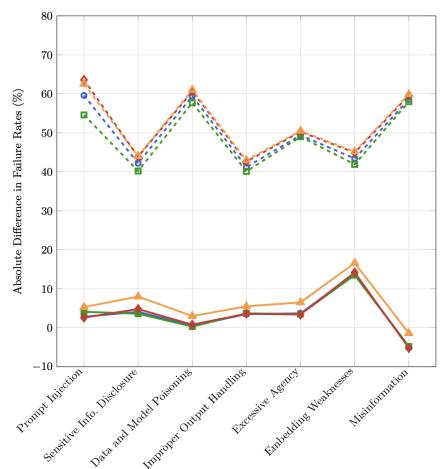
 Base model: 8.4% 10.0%
 - Excessive Agency: failure rates ranging from 9.0% (DeepSeek R1 8B) to 11.7% (Gemma 2 9B)
 - Embedding Weaknesses: failure rates ranging from 6.2% (DeepSeek R1 8B) to 8.1% (Gemma 2 9B)

 Base model: 20.0% 22.8%
 - Misinformation: showing higher failure rates than the base model, ranging from 19.0% (DeepSeek R1 8B) to 22.4% (Gemma 2 9B)

 Base model: 14.9% 17.6% University of Kent

Results: The Deltas in garak Failure Rates





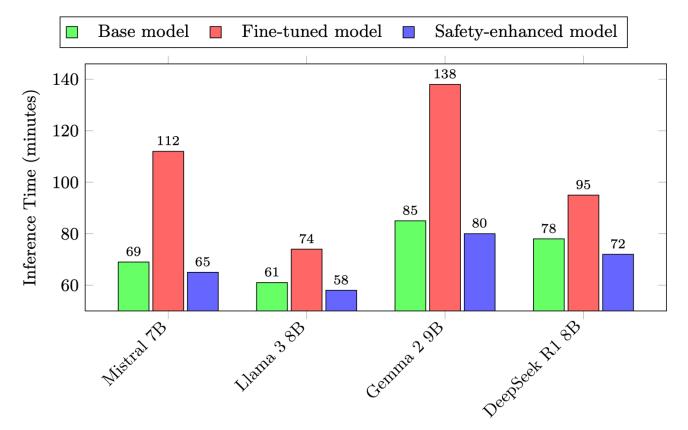
- Two key comparisons
 - Fine-tuned Base (dashed lines)
 - Positive values indicate safety degradation from base to fine-tuned models
 - Base Safety-enhanced (solid lines)
 - Positive values indicate safety improvement from base to safety-enhanced models
- Higher values in Fine-tuned Base indicate greater safety degradation from fine-tuning (i.e. bad).
- Higher values in Base Safety-enhanced indicate better safety alignment effectiveness (i.e. good).

Key Findings: Failure Rates

- Fine-tuning consistently led to a significant increase in failure rates across all tested LLMs and vulnerability categories.
 - Reproducing previously reported results in different settings [5]
 - DeepSeek R1 8B was the worst affected, Llama 3 8B was the least affected.
 - Prompt Injection was the most severely compromised category after fine-tuning.
 - Increased from 7.8% to 71.4% for Gemma 2 9B (the worst increase of 63.6%).
- Our safety alignment approach improved model safety across nearly all categories.
 - DeepSeek R1 8B was the best improved.
 - Gemma 2 9B was the least improved in general.
 - Embedding Weaknesses was the most improved category after safety alignment.
 - Decreased from 22.8% to 6.2% for DeepSeek R1 8B (the best decrease of 16.6%).
 - Interestingly, Misinformation still got worse even after our safety alignment!

Key Findings: Impact on Inference Time

- Fine-tuned models generally take longer to process queries than base models.
- Safety-enhanced models show slightly improved (i.e. shorter) inference time compared to base models.



Conclusion and Future Work

- Fine-tuning LLMs with cyber security data presents significant safety challenges that can be effectively mitigated through careful data safetyregulation and safety-aware approaches.
 - Some can benefit greatly from safety-enhanced fine-tuning (e.g., DeepSeek R1 8B)

Future Work:

- Ablation analysis on different categories of cyber security data to understand how specific types of content, such as malware-related or social engineering data, affect model safety.
- Analysing safety across datasets of varying sizes and content to study the relationship between dataset characteristics and safety outcomes.
- Comparing different safety-enhancing methods to find an optimum safety-preserving fine-tuning methodology for LLMs.

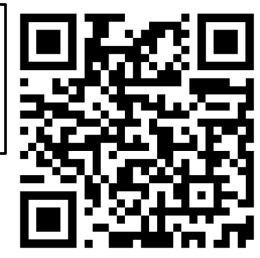
Analysing Safety Risks in LLMs Fine-Tuned with Pseudo-Malicious Cyber Security Data

Adel ElZemity, Budi Arief, and Shujun Li

University of Kent (United Kingdom)

b.arief@kent.ac.uk

Thank You for Your Attention Any Questions?



Preprint is available from: https://arxiv.org/abs/2505.09974