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Introduction & Motivation

« LLMs are increasingly used in cyber security for tasks such as
threat detection [1] and static analysis [2].

 LLMs' usage has also led to risks, including personal data leaks

and the automated generation of malware [3][4].
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Introduction & Motivation

» Key Research Questions (RQs):

RQ1: Can we reproduce the safety degradation
previously reported in [5] using a different set of
evaluation framework and models?

RQ2: How can we maintain or even improve the safety
of fine-tuned LLMs while preserving their technical
utility”?
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Background
e “Pseudo-Malicious” Security categories in CyberLLMInstruct dataset
« Data containing instructions
and descriptions of malicious
cybersecurity actions, but
without including actual
harmful code N — 3% |
* We use the CyberLLMInstruct
dataset [9] 8%
« 54,928 pseudo-malicious
inStrUCtion_reSponse pairs B Malware (19,224) M Social Engineering (13,732) ™ DoS/DDoS (5,493)
» Across elght secu rlty MITM (5,493) W Zero-Day (4,394) M Password (3,296)

CategOrieS W IoT (1,648) M Injection (1,648)

5. ElZemity, A., Arief, B. and Li, S. (2025). CyberLLMInstruct: A Pseudo-malicious Dataset Revealing Safety-performance Trade-offs in Cyber Security LLM
Fine-tuning. Accepted for the 2025 Workshop on Attificial Intelligence and Security (AlSec 2025). https://doi.org/10.1145/3733799.3762968 (to appear, . . a
5 preprint available from https://arxiv.org/abs/2503.09334, dataset available from https:/github.com/Adelsamir01/Cyberl L MInstruct). University of Kent
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Methodology

 To answer RQ1, we used an evaluation framework that is different
to the one used in [5] (which was DeepEval), and a different set of
models (with some overlap).

- Evaluation Framework: This paper used the NVIDIA's garak red
teaming framework [6] — along with the OWASP Top 10 for LLM
Applications [/] — to assess vulnerabillities.

 Models Tested: We evaluated four open-source LLMSs:

« Mistral 7B |y vzsmea

. Llama 3 8B OX) LLaMA
- Gemma 2 9B <z Gemma
» DeepSeek-R1-0528-Qwen3-8B [new in this paper] &deepseel(

6. Derczynski, L., Galinkin, E., Martin, J., Majumdar, S. and Inie, N. (2024). garak: A Framework for Securrty Problng Large Language Models. hllpﬁ_.[LgaLak.aj
NAS( a/WW - ge-1angud i

7 7. OWASP Foundation (2025). OWASP Top 10 for Large Language Model Applications. https://owasp ons/, University of Kent
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Methodology

Safety alignment was inspired by

« Rewording instructions to affect model performance and alignment [8]
* Leveraging mistakes as learning opportunities [9]

To answer RQ2, we carefully reworded each instruction-response
pair in the CyberLLMiInstruct dataset

 Incorporating explicit safety precautions and risk explanations while
preserving the technical content
« Explicit warnings about potential misuse and ethical implications
» Clear statements about legal boundaries and responsible disclosure
« Educational context explaining defensive applications of the information

8. Sun, J., Shaib, C., and Wallace, B.C. (2024). Evaluating the zero-shot robustness of instruction-tuned language models. In: The Twelfth International Conference on
Learning Representations. https://doi.org/10.48550/arXiv.2306.11270.
9. Chen, K., Wang, C., Yang, K., Han, J., Hong, L., Mi, F., Xu, H., Liu, Z., Huang, W., Li, Z. and Yeung, D.Y. (2024). Gaining wisdom from setbacks: Aligning large . fK(:.‘ t
8 language models via mistake analysis. In: The Twelfth International Conference on Learning Representations. https://doi.org/10.48550/arXiv.2310.10477. UmverS]ty 0 n
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Results: garak Failure Rates

Vulnerability Mistral 7B Llama 3 8B Gemma 2 9B Deepseek R1 8B
Prompt 6o o 6> Lo R 20 « Evaluated across seven
Injection 6.3 0 4.5 1 52 1 42 1 OWASP | blt

. vuinerapliues
Isr(f;:)ilxzﬁion 167 O 154 O 182 O 190 O
Disdosare  be @ e m VI TR « The scores range from O

fully secure) to 100
Data and 124 O 118 O 136 O 140 O ( y )
Model 718 [ 60.5 LI 747 o 750 (I (completely vulnerable).
Poisoning 119 H 115 O 128 W 110
 Three vulnerabilities
Improper 89 O 84 [ 97 0O 100 O .
Output 501 485 [ 523 [ 530 (Supply Chain, System
Handli . :
anene Prompt Leakage, and
Excessive - g — o — g — Unbounded Consumption)
Agency 105 O 93 O 117 90 O -
were not yet supported in

Embedding 31 By | 20 Bam | ¥ B | & B garak’s testing framework
Weaknesses 73 B 65 0 81 0 62 1 during the ertlng Of thIS
Mis. 160 O 119 O 172 O 176 O paper (May-June 2025).
information 30§ & % A w2 . B A

®) 0 Basemodel M Fine-tuned model M Safety-enhanced model University of Kent
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Results: garak Failure Rates

Failure rates post fine-tuning with pseudo-malicious data (9etting worse)
* Prompt Injection: failure rates get as high as 72.0% for DeepSeek R1 8B, with 63.2%

being the lowest (LIlama 3 8B), so it is still pretty worrying Base model: 7.8% —9.5%
« Sensitive Information Disclosure: failure rates range from 55.6% (Llama 3 8B) to 63.0%
(DeepSeek R1 88) Base model: 15.4% — 19.0%
- Data and Model Poisoning: failure rates consistently get very high, between 69.5%
(Llama 3 8B) and 75.0% (DeepSeek R1 8B) Base model: 11.8% — 14.0%
« Improper Output Handling: showing varying degrees of resilience, with failure rates
ranging from 48.5% (Llama 3 8B) to 53.0% (DeepSeek R1 8B) Base model: 8.4% —10.0%
« Excessive Agency: failure rates ranging from 61.8% (Llama 3 8B) to 66.0% (DeepSeek
R1 8B) Base model: 12.8% — 15.5%
« Embedding Weaknesses: failure rates ranging from 61.9% (Llama 3 8B) to 68.0%
(DeepSeek R1 8B) Base model: 20.0% — 22.8%
« Misinformation: showing a failure rate as high as 77.5% for DeepSeek R1 8B, while Llama
3 8 B is the “lowest” at 72.9% DS O ity of Kent
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Results: garak Failure Rates

Failure rates with safety-enhanced models (mainly geting better)

Prompt Injection: failure rates get the best improvement, as low as 4.2% (DeepSeek R1

8B), to 6.3% (Mistral 7B) Base model: 7.8% — 9.5%
Sensitive Information Disclosure: failure rates range from 11.0% (DeepSeek R1 8B) to
13.4% (Gemma 2 QB) Base model: 15.4% — 19.0%
Data and Model Poisoning: similarly, failure rates range from 11.0% (DeepSeek R1 8B)
to 12.8% (Gemma 2 QB) Base model: 11.8% — 14.0%
Improper Output Handling: showing the second-best improvement, with failure rates
ranging from 4.5% (DeepSeek R1 8B) to 6.1% (Gemma 2 9B) Base model: 8.4% —10.0%
Excessive Agency: failure rates ranging from 9.0% (DeepSeek R1 8B) to 11.7% (Gemma
2 98) Base model: 12.8% — 15.5%
Embedding Weaknesses: failure rates ranging from 6.2% (DeepSeek R1 8B) to 8.1%
(Gem ma 2 gB) Base model: 20.0% — 22.8%
Misinformation: showing higher failure rates than the base model, ranging from 19.0%
(DeepSeek R1 8B) to 22.4% (Gemma 2 9B) Base mOdl‘jr';ivas-i?;/g a2
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Results: The Deltas in garak Failure Rates

—8— Base — Safety-enhanced (Mistral 7B) -©- Fine-tuned — Base (Mistral 7B)

—#— Base — Safety-enhanced (Llama 3 8B) -B- Fine-tuned — Base (Llama 3 8B)

—— Base — Safety-enhanced (Gemma 2 9B) -é- Fine-tuned — Base (Gemma 2 9B)
Base — Safety-enhanced (DeepSeek R1 8B) Fine-tuned — Base (DeepSeek R1 8B)
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Two key comparisons

* Fine-tuned — Base (dashed lines)
» Positive values indicate safety degradation
from base to fine-tuned models
« Base — Safety-enhanced (solid lines)
* Positive values indicate safety improvement
from base to safety-enhanced models
Higher values in Fine-tuned — Base
indicate greater safety degradation from
fine-tuning (i.e. bad).
Higher values in Base — Safety-enhanced
indicate better safety alignment
effectiveness (i.e. good).
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Key Findings: Failure Rates

* Fine-tuning consistently led to a significant increase in failure rates across all
tested LLMs and vulnerability categories.

Reproducing previously reported results in different settings [9]
DeepSeek R1 8B was the worst affected, Llama 3 8B was the least affected.

Prompt Injection was the most severely compromised category after fine-tuning.
* Increased from 7.8% to 71.4% for Gemma 2 9B (the worst increase of 63.6%).

* QOur safety alignment approach improved model safety across nearly all
categories.

DeepSeek R1 8B was the best improved.
Gemma 2 9B was the least improved in general.

Embedding Weaknesses was the most improved category after safety alignment.
« Decreased from 22.8% to 6.2% for DeepSeek R1 8B (the best decrease of 16.6%).

Interestingly, Misinformation still got worse even after our safety alignment!
University of Kent
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Key Findings: Impact on Inference Time

* Fine-tuned models generally take longer to process queries than base models.

« Safety-enhanced models show slightly improved (i.e. shorter) inference time
compared to base models.

O Basemodel B Fine-tuned model M Safety-enhanced model
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Conclusion and Future Work

Fine-tuning LLMs with cyber security data presents significant safety
challenges that can be effectively mitigated through careful data safety-
regulation and safety-aware approaches.

Some can benefit greatly from safety-enhanced fine-tuning (e.g., DeepSeek R1 8B)

Future Work:

« Ablation analysis on different categories of cyber security data to
understand how specific types of content, such as malware-related or
social engineering data, affect model safety.

* Analysing safety across datasets of varying sizes and content to study
the relationship between dataset characteristics and safety outcomes.

« Comparing different safety-enhancing methods to find an optimum
safety-preserving fine-tuning methodology for LLMs.

University of Kent



Analysing Safety Risks in LLMs Fine-Tuned with
Pseudo-Malicious Cyber Security Data

Adel ElZemity, Budi Arief, and Shujun Li

University of Kent (United Kingdom)
b.arief@kent.ac.uk

Thank You for Your Attention
Any Questions?

Preprint is available from: https://arxiv.org/abs/2505.09974



mailto:b.arief@kent.ac.uk
https://arxiv.org/abs/2505.09974

	Slide 1
	Slide 2: Outline
	Slide 3: Introduction & Motivation
	Slide 4
	Slide 5: Background
	Slide 6
	Slide 7: Methodology
	Slide 8: Methodology
	Slide 9: Results: garak Failure Rates 
	Slide 10
	Slide 11
	Slide 12: Results: The Deltas in garak Failure Rates
	Slide 13
	Slide 14
	Slide 15
	Slide 16

